
 

 

 

Short Proposal 

Gravitational physics meets Computational biology 

Key question: Somewhat surprisingly, it remains unknown if the Molecular ​Dynamics           

simulations, popular tool of structural biology, gives correct ​dynamics of biomolecules; this is             

because the extended ensemble methods used are aimed at calculating ​averages ​, not dynamics. 

Key result:​ Mathematical proof if the dynamics are correct or not. 

Key impact: ​A ‘YES’ would set the approach on the firm footing it deserves; a ‘NO’ would                 

initiate a new field of study to look into the consequences of and remedies to this. 

______________________________________________________________________ 

1. Research idea and context 

Starting point. Molecular Dynamics (MD) simulations has become a hugely prevalent tool for             

studying the structure and ​dynamics ​of biomolecules. It is especially useful when molecules are              

intrinsically unstructured in their biologically relevant state—such as lipids forming the core of             

the cell membrane or the intrinsically disordered proteins—so a single snapshot provided by a              

crystal structure is not fully informative, but rather an ensemble of typical structural states, with               

the rates of movement between them, is preferred. MD can deliver just this dynamic view. Or so                 

it is believed. 

Open question. ​To be precise, nobody knows if MD really can reach the above proclaimed               

interrogative power, see ‘On extended ensembles’. That is, we do not know if, mathematically              

speaking, our choice of equations of motion leads to correct ​dynamics of the biomolecules under               

study. While it is reasonable to assume that this is the case—as the equations do give correctly                 

weighted averages—the real proof is lacking. Here we wish to pursue this matter. 

Relevance. ​Thousands of scientific articles describing MD simulations of biomolecules are           

published yearly, and most of these discuss ​dynamics ​: protein folding pathways, mechanisms of             

viral assembly, enzyme–ligand dynamics, phospholipid diffusion mechanisms, untwisting of         

DNA, ​et cetera ​. Scrutinizing the underlying assumption of this huge body of work is a highly                

relevant task. 

Perspective. The project has two possible successful outcomes: 1) NO, the currently used             

extended ensemble methods do not produce the correct dynamics; this would initiate a new              

research field to study the consequences of the problem and its possible remedies. ​2) YES, the                

 



extended ensemble MD does indeed produce the correct dynamics. Proving this would give this              

widely used research tool a firm mathematical foundation—a very relevant fundamental result. 

On extended ensembles. ​Classical MD solves Newton's equations of motion for ​N atoms             

within volume ​V​; solutions conserve the total energy ​E​. With ​N​, ​V​, and ​E fixed, any snapshot                 

along the time-integrated trajectories appears as if coming from the ​microcanonical           

thermodynamic ensemble. This motivates the ​ergodic hypothesis (EH): Time averages over these            

NVE trajectories are equal to the microcanonical ensemble averages. If EH holds, then by              

accurately solving Newton's equations one can use MD to sample the microcanonical ensemble. 

As the ​N​-particle equations of motion are not analytically solvable, one must resort to              

numerical time-integration. But it turns out that no numerical integration scheme can provide the              

exact solution needed to invoke EH. Interestingly, however, one class of numerical integrators,             

the ​symplectic integrators, has the property of exactly solving not the original system, but a               

system (in a mathematical sense) close to it. Thus symplectic integrators indeed produce exact              

solutions (of the close-by ​NVE system), and one can argue by EH that the time averages are                 

indeed equal to the microcanonical ensemble averages. Bottom line: In its basic form, the MD               

trajectories describe ​NVE​ dynamics correctly. 

However, current biomolecular simulations do not use MD in its basic form. The             

equations of motion are modified to impose fluctuations on ​E such that the system temperature ​T                

has a distribution characteristic of the ​canonical ensemble (average( ​T ​)=​T ​b​, variance( ​T ​)=2​T ​b​2​/3 ​N​,          

with ​T ​b the fixed temperature of the surroundings); the ​isothermal–isobaric ensemble is reached             

when also V is made to fluctuate to control the pressure ​p​. Importantly, while these               

modifications, also known as ​extended ensemble methods ​, do allow sampling from           

thermodynamic ensembles closer to the experimental setting (one typically does not control ​E of              

a biomolecular experiment, but rather the ​T and ​p of the surroundings), the ​modifications do not                

need to maintain realistic dynamics ​. 

______________________________________________________________________ 

2. Proposed solution or concept 

The extended ensemble MD, unlike classical MD in ​NVE​, does not preserve the volume of the                

phase space (6 ​N​-dimensional space of the positions and momenta of the ​N atoms). That is,               

whereas the trajectories produced by MD in ​NVE exist in flat space, to the extended ensemble                

trajectories the phase space appears curved. In fact, here things might be even weirder, as there                

are indications that in the extended ensemble simulations the ​metric of the phase space might be                

time dependent. In other words, the distance between structures A and B (of say, a protein) might                 

 



 

not depend only on ​what are the positions and velocities of the atoms in A, but also ​when they                   

are. This deep interconnectedness between the time and space coordinates aroused the interest of              

a (rather brilliant) post doc candidate, who in his PhD (to be handed in this autumn) specialized                 

in the geometric analysis in Gravitational physics. He proposed that we try out the following. 

Unique ​approach: ​Import ​mathematical ​tools ​from ​Gravitational ​Physics ​to ​understand ​MD           

We believe that as the extended ensemble MD approaches can be interpreted as evolution of the                

phase space geometry, the tools used by the mathematical relativity community to tackle the              

black hole stability problem (such as the Energy and Morawetz estimates on curved             

backgrounds) and the tools developed by the numerical relativity community to deal with             

evolving metrics would find interesting use also in the MD setting. 

______________________________________________________________________ 

3. Objective of the exploratory phase  

We apply the tools developed in the context of Gravitational physics to analyze the phase space                

structure and evolution caused by different deterministic MD extended ensemble techniques,           

such as the widely applied Nose–Hoover thermostat and Parrinello–Rahman barostat. In           

particular, we will characterize if solutions for these systems exist, are unique, and are stable               

under small perturbations. 

Tasks: 1) Formulate the question in precise mathematical language: Which equations,           

under which conditions, have to satisfy which properties. Note that formulating the problem in              

the language of the mathematical relativity community will already increase its visibility and             

make it accessible for many more skilled people to work on. 2) Estimate how difficult the                

mathematical problem itself is. 3) Work out the mathematical problem. Time permitting: 4)             

utilize thus gained understanding of the mathematical structure of these systems to develop             

optimal numerical solvers for them, similar to symplectic integrators understood to be optimal             

for ​NVE​. 

 


